

Human Intelligence vs.

Machine Logic

New Mexico Supercomputing Challenge
Final Report

April 23rd, 2019
Multi-School 12

Nex+Gen Academy, Eldorado High School

Team Members:
Brendan Kuncel, Quentin Dye, and Savannah Phelps
Sponsor Teacher:
Karen Glennon
Mentor:
Patty Meyers

1

Table of Contents

1. Executive Summary………………………………………………………….3

2. Introduction ……………………………………………………………...…...5

2.1. Problem Definition
2.2. Background
2.3. Significance

3. Research…………………………………….………………………………..7

3.1. Algorithms

4. Problem Solution……………………………………………………..………8
4.1. Method
4.2. Program
4.3. Human Testing
4.4. Challenges

5. Conclusions………………………………………………………………….18

5.1. Results
5.2. Analysis
5.3. Future Development

6. Acknowledgments…………………………………………………………...20

6.1. Team Information

7. Appendix……………………………………………………………………...21

8. Bibliography………………………………………………………….……….26

2

Executive Summary
It is common knowledge that a brain is comparable to a computer due to basic

similarities in design. However, these principles have critical differences that lead to the

disparity between the skills computers and brains can have. For example, a child can

read and comprehend the meaning of a simple sentence using far fewer neural steps

than lines of code a computer would have to use to perform the same task. However, a

computer can perform complex equations in milliseconds that would take a human

minutes or hours to comprehend and correctly solve.

Unfortunately, although we can understand these design differences, we can not

as easily implement them. As an example, human brains are superior at parallel

processing, while computers are superior at serial processing. Parallel processing will

always trump serial when enough steps are required, but parallel processing is

extremely difficult to implement hardware-wise, which is why it is only used in

supercomputers, and even then relatively limited.

Studying the complexities between humans and machines gives rise to many

questions. Such as, in our case, what will these differences change when humans solve

the same maze as machines.

Machines are programmable, and perfect in the respect that they follow their

commands exactly. We know for a fact that artificial intelligences will not include bias

and will strictly follow an algorithm. This is something we can not know about humans,

who are prone to suspicion.

3

For example, a human may pick directions to go in a maze at random, only

attempting to head in the direction of the end. They may suspect a certain direction will

lead them closer, and pursue that direction until barriers dissuade them.

Our hope is that enough of human’s maze solving techniques are relatively

systemized, or at least show resemblances to other’s techniques so that we can make a

model of a human based off of this data. This model in itself has fallacies, including the

design differences mentioned above being breached.

Our project therefore, is to examine these differences and try to overcome these

difficulties.

4

Introduction
Problem Definition

Our project is to create a comparison of human intelligence and machine

intelligence in the scopes of iterative maze solving. We will analyze how a human and

an agent-based model improve the time it takes for them to solve in terms of the

number of turns they take.

This will involve creating a maze solver in netlogo that can incorporate multiple

maze solving algorithms, a program that tracks the number of steps, finds the optimal

maze path and performs other record keeping functions, and a clear user interface that

allows the human to solve the maze on a computer.

We will also test human subjects with varying features such as handedness, age,

personality, gender, race, and background in order to remove as much situational bias

from the human testing.

Background
Last year, our team completed a project on the efficiency of different

maze-solving algorithms: flood method, right-hand, left-hand, clockwise, and

counter-clockwise in randomly generated and grid mazes. We discovered that the flood

method was most effective, but not very realistic for humans attempting to solve a

maze.

5

This project allowed us to learn about the maze solving techniques we would

most like to compare to humans. The algorithms we have chosen to use are all possible

to humans, although humans would not follow them.

Research in this area has been done before, but in our searching we have been

unable to find a more general comparison such as we are attempting.

Significance
Although this project does not have possible real-world applications in mind,

there are possibilities for its use.

This project, for example, demonstrated a long debated point: that humans and

machines are far from reaching the same level of maze solving efficiency. To expand,

humans and machines can not yet perform the same activities in the same way.

Perhaps in the future the limiting factors in our project will be removed, but presently,

we are stuck.

6

Research
Algorithms
Flood Solve: (This is an algorithm separate from what we are testing, we are using this

to find the optimal path through the mazes we have created.) This method simply tests

every single path through the maze and compares the number of steps each path takes.

Although this can get heavy in larger mazes, our mazes are small enough that it is not

difficult for the code.

Wall Follower (Right or Left): This algorithm simply always takes a specific direction,

which in our program can be changed to right or left, then changes which direction they

go counterclockwise or clockwise respectively. This algorithm can get stuck in areas

where a loop path occurs, but it mostly reliable.

Tremaux: Also called the breadcrumb method, this algorithm tracks the path the agent

is taking through the maze. To begin, it follows the principles of a wall follower

algorithm, but when the previously taken path intercepts with where the agent is going,

the agent turns around and retraces its steps until a new, untravelled path is found and

followed.

This algorithm is unique because while it may not be able to find the optimized path, it

can always find a solution regardless of loops in the maze structure.

7

8

Problem Solution
Method

In order to solve our problem, we realized that our project would be a comparison

of three parts. Part One would be the computer maze solver created with its algorithms

listed above. Part Two would be the average human model created by factoring in all

the tests that we conducted. Part Three would be a sort of control, and simply contain

the optimal path through the maze. We also needed to include code for recording the

number of steps a solution took, displaying the maze, and tracking a user or computer’s

path through the maze.

All of this was done in NetLogo due to its unique ability to visually represent the

code we write, and the user’s ability to interact with an interface. We have used

NetLogo in many of our past projects, including last year’s.

Since we have two mazes, we would perform this comparison twice with the

different mazes.

Part One involved programming out each maze algorithm we were going to use.

As we did this, research from last year came in to play, demonstrating where the three

computer algorithms we are using lack compared to humans.

Part Two meant that we needed several changes to how the maze display

worked. We had to incorporate directional buttons, physically prevent the user from

crossing maze walls, and limit the user’s vision throughout the maze. If a user were to

9

try to cross a wall by pressing a button, the command will not work and an error

message will appear in a text box beside the maze.

We chose to limit the user’s vision as they go through the maze so that they can

only see the walls directly around their cursor and the ending square to even the playing

field between humans and machines. Most algorithms can also only see the squares

around them as well as the beginning and end.

Unfortunately, after we completed human testing, we were unable to digitally

analyze results, but through observing the completed mazes and their trends, we were

able to objectively map out where many humans would chose to go.

Part Three was very similar to the functions of Part One, but is a separate

category of comparison. Finding the optimal path through the maze and comparing the

number of steps that path takes to how many Part One and Part Two takes.

Program

To begin, a simple interface is displayed (see 7.1). In this image, one of the

previously created mazes is seen. This was created by a sequence of code triggered by

setting the variable writing = true. This code allows us to use arrow keys or the buttons

on the interface to delete wall segments in a blank grid. These mazes can be stored

within the program and remembered later. The following code is a segment from this

sequence:

if writing = true

 [

 file-close

10

 file-open Stored_Maze_Name

 file-write "w"

]

 ask turtles

 [

 ifelse finished != true

 [

 ask patch (xcor) (ycor)

 [

 set closed-top false compile

]

 set heading 0 forward 1

 ask patch (xcor) (ycor)

 [

 set closed-bottom false compile

]

]

 [

 set heading 0

 ifelse closed-top != true

 [

 ask patch (xcor) (ycor)

 [

 sprout 1

 [

 set shape "up arrow" set heading 0 stamp die

]

]

 set heading 0 forward 1

 set step step + 1

 ask patch (xcor) (ycor)

 [

 sprout 1

 [

 set shape "down arrow" set heading 0 stamp die

]

]

 Output-print "\n \n \n \n"

]

 [

 Output-print "Action not allowed!"

11

]

]

]

The keystrokes used to create the maze can be stored in NetLogo’s built in file-storage

system. They can be ead back by the print-maze function in the interface. Some pitfalls

while building this was making sure that only keys while building the maze would be

saved. This was solved by adding a variable defining when the maze is being written

(writing = true). The file also checks to make sure there are still letters left to read back.

The initial starting and ending points (shown by the green and red squares in the

maze) can be selected with numerical inputs for x and y coordinates in the interface.

The following code is a simple command to reveal the walls around it when a

human is solving the maze. It asks any patch that has a turtle on it to reveal it’s walls

with the function show-walls.

To show-walls

if closed-top = true

 [

 sprout 1

 [

 set shape "Top-Wall" set heading 0 stamp die]

]

End

It is important to note that what is seen in the interface is purely visual. The working

code uses variables, not walls, then converts the variables into specially designed

patches.

12

The flood method used to find the optimal path (see 7.2) is done by having turtles

check every direction for both walls and other turtles. If none are found in a certain

direction, the code will send an identical turtle to that location. This is repeated until

there is a turtle on the end patch. When this happens, the function optimize-path is

called, showing the final path as the one with the shortest number of steps. As an

example, the code for checking the right before extending to that point is as follows:

if closed-right != true

 [

 if not any? turtles-on patch-at-heading-and-distance 90 1

 [

 hatch 1 [set heading 90 forward 1]

]

]

Tremaux method (see 7.4) detects a dead end to block off using a set of

instructions that give each wall around it a temporary variable. If there are three walls

surrounding the turtle, that square is declared a dead end and is blocked off.

The code for this process is as follows:

set tempcounter 0

 ifelse closed-top = true

 [

 set tempcounter tempcounter + 1

]

 [

 set direction-to-close "top"

]

 ifelse closed-bottom = true

 [

 set tempcounter tempcounter + 1

13

]

 [

 set direction-to-close "bottom"

]

 ifelse closed-right = true

 [

 set tempcounter tempcounter + 1

]

 [

 set direction-to-close "right"

]

 ifelse closed-left = true

 [

 set tempcounter tempcounter + 1

]

 [

 set direction-to-close "left"

]

 if tempcounter = 3

 [

 if direction-to-close = "top"

 [

 ask patch xcor ycor

 [

 set closed-top true

 show-walls

 set gone-up false

]

 right-up

 ask patch xcor ycor

 [

 set closed-bottom true

 show-walls

 set gone-down false

]

]

 if direction-to-close = "bottom"

 [

 ask patch xcor ycor

 [

 set closed-bottom true

 show-walls

 set gone-down false

14

]

 right-down

 ask patch xcor ycor

 [

 set closed-top true

 show-walls

 set gone-up false

]

]

 if direction-to-close = "left"

 [

 ask patch xcor ycor

 [

 set closed-left true

 show-walls

 set gone-left false

]

 right-left

 ask patch xcor ycor

 [

 set closed-right true

 show-walls

 set gone-right false

]

]

 if direction-to-close = "right"

 [

 ask patch xcor ycor

 [

 set closed-right true

 show-walls

 set gone-right false

]

 right-right

 ask patch xcor ycor

 [

 set closed-left true

 show-walls

 set gone-left false

]

]

 set temp true

]

15

Now that the algorithms are created, one last function is needed to run them,

which is as follows:

to run-solver

 if solver = "Left-Hand"

 [

 left-hand

]

 if solver = "Right-Hand"

 [

 right-hand

]

 if solver = "Flood"

 [

 Flood

]

 if solver = "Tremaux"

 [

 breadcrumb

]

 if finished? = true

 [

 stop

]

end

Human Testing
Human testing was perhaps the most difficult part of this project to approach.

Humans have too many metal processes running at all times to create a perfect testing

environment. The only way to try to remove this bias is to collect a wide variety of data,

and let the differences begin to neutralize each other.

Some examples include what instructions are given to each test subject (telling

them to focus on speed or accuracy can completely change their solving technique),

how familiar they are with the testing software, and any number of outside stressors.

16

At the beginning, we were concerned with how to provide the computer and the

human with as similar a situation as possible, which led to us removing the humans

ability to see the entire maze. Any further handicaps threatened to create more

uncontrollable variables.

Our testing procedure is as follows:

1. Place subject in a comfortable seated position in front of the computer displaying

a blank test screen (see Appendix).

2. Instruct subjects: “A maze will appear on the screen in front of you. Use W,A,S,

and D to move up, left, down, and right respectively. You may not go through

walls. If you try to, an error will appear. You will be able to see the beginning and

the end, the walls directly around you, and where you have previously been. You

are being measured on accuracy, not speed. Please try your best.”

3. Administer the two mazes sequentially, photographing and labeling their

completed maze after each trial.

Challenges

Our project has been through many iterations and changes throughout the year.

Early in the project, our project involved creating a robot that would physically solve

mazes and improve its effectiveness. This idea was scrapped in favor of something with

a more quantitative “solution”.

Later, our project required us to create code that goes beyond our physical

means and understanding of artificial intelligence. We intended to use principles of

17

reinforcement learning, something tricky to comprehend, let alone program and apply to

our overall project goal.

We also had become sidetracked trying to make our own maze generator. We

realized from mentor critique that this was an unnecessary feature we could easily find

other software for or manually create our mazes (what we eventually did).

Many small decisions or roadblocks appeared, but nothing that didn’t strengthen

the validity of our project.

18

Conclusions
Results

At the conclusion of this project, after having testing our model using computer

algorithms and humans, we have discovered the following facts:

● The Wall Follower methods are impractical in this setting, and were never able to

solve the mazes we created due to there being a loop

● While the Tremaux's method is more reliable than humans in terms of

maintaining a consistent number of steps throughout tests, humans have been

much closer to the optimal path more times

● Humans step counts show the highest variety between test subjects and mazes

● Humans favor vertical directions before horizontal, and regardless of the

locations of the starting and ending point will usually go up or down towards the

finish

Analysis

In the grand debate between humans and machines, it appears that in this

limited scenario, humans advanced parallel processing and creative thought trump the

computer's steadiness.

In a way, our findings support what scientists and engineers have been realizing

since 1965 when the first artificial intelligences capable of solving calculus problems

19

and playing chess were created. At this time, many believed that in a few decades

robots would catch up to humans (which we now know was quite the understatement).

Future Development

This project could be benefitted extremely by widening the scopes used to test

with. More widespread testing combined with more computer algorithms would make

this a more expansive and accurate conclusion.

In future years, we would follow these suggestions as well as possibly

incorporate more of our research regarding human learning.

20

Acknowledgements
We would like to thank Patty Myers and Karen Glennon for always supporting our

efforts, giving us advice and keeping us on track. We also appreciate our interim judges,

Zeinab Akhavan, Scott Wilson, and Quincy Wofford for helping us get a better

perspective on our project and look at ways to improve.

Team Information
Brenden Kuncel is a junior attending Eldorado High School. He is very interested in

STEM fields, having been in the challenge or GUTS since elementary school. He was

the main programmer in this project.

Quentin Dye is a senior at NexGen Academy. He is planning on attending New Mexico

Tech next year, and currently works for the challenge designing this year’s website. He

is the secondary programmer, researcher, and website designer.

Savannah Phelps is a sophomore at Eldorado High School. She is interested in

mathematics and robotics at her high school, as well as how these topics apply to fine

arts. She is the report writer and main researcher.

21

Appendix
1. Maze interface with one of our premade mazes

22

2. The optimal path for both of the mazes found by using the flood solve method

23

3. The path used by the left and right wall follower methods on one of our mazes

24

4. The path found by Tremaux’s method in one of our mazes

5. Both mazes solved by a sample human test subject

25

26

Bibliography
1. Nilsson, Nils J. ​Principles of Artificial Intelligence​. Springer Berlin, 2014.

2. Moravec, Hans P. ​Mind Children: the Future of Robot and Human Intelligence​.

Harvard Univ. Pr., 2010.

3. Minsky, Marvin. ​The Emotion Machine: Commonsense Thinking, Artificial

Intelligence, and the Future of the Human Mind​. Simon & Schuster, 2007.

4. Washburn, David A. “Analyzing the Path of Responding in Maze-Solving and

Other Tasks.” ​Behavior Research Methods, Instruments, & Computers​, vol. 24,

no. 2, 1992, pp. 248–252., doi:10.3758/bf03203502.

5. Whitworth, Brian, and Hokyoung Ryu. “A Comparison of Human and Computer

Information Processing.” ​Machine Learning​, 2012, pp. 1–12.,

doi:10.4018/978-1-60960-818-7.ch101.

27

